Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/32177
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDüring, Bertramen_US
dc.contributor.authorMatthes, Danielen_US
dc.contributor.authorToscani, Giuseppeen_US
dc.date.accessioned2009-09-17en_US
dc.date.accessioned2010-05-14T12:00:41Z-
dc.date.available2010-05-14T12:00:41Z-
dc.date.issued2008en_US
dc.identifier.piurn:nbn:de:bsz:352-opus-116742-
dc.identifier.urihttp://hdl.handle.net/10419/32177-
dc.description.abstractKinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply e.g. to the market model with risky investments [S. Cordier, L. Pareschi and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [B.K. Chakrabarti, A. Chatterjee and S.S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.en_US
dc.language.isoengen_US
dc.publisher|aCoFE |cKonstanzen_US
dc.relation.ispartofseries|aDiscussion paper series // Zentrum für Finanzen und Ökonometrie, Universität Konstanz |x2008,03en_US
dc.subject.ddc330en_US
dc.titleKinetic equations modelling wealth redistribution: a comparison of approachesen_US
dc.type|aWorking Paperen_US
dc.identifier.ppn608951617en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-

Files in This Item:
File
Size
239.87 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.