Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/319273 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Journal of Time Series Analysis [ISSN:] 1467-9892 [Volume:] 46 [Issue:] 2 [Publisher:] John Wiley & Sons, Ltd [Place:] Oxford, UK [Year:] 2024 [Pages:] 235-257
Verlag: 
John Wiley & Sons, Ltd, Oxford, UK
Zusammenfassung: 
Ridge regression is a popular method for dense least squares regularization. In this article, ridge regression is studied in the context of VAR model estimation and inference. The implications of anisotropic penalization are discussed, and a comparison is made with Bayesian ridge‐type estimators. The asymptotic distribution and the properties of cross‐validation techniques are analyzed. Finally, the estimation of impulse response functions is evaluated with Monte Carlo simulations and ridge regression is compared with a number of similar and competing methods.
Schlagwörter: 
Impulse responses
inference
ridge regularization
vector autoregression
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe
812.23 kB





Publikationen in EconStor sind urheberrechtlich geschützt.