Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/317464 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Journal of Business Economics and Management (JBEM) [ISSN:] 2029-4433 [Volume:] 22 [Issue:] 1 [Year:] 2021 [Pages:] 98-117
Verlag: 
Vilnius Gediminas Technical University, Vilnius
Zusammenfassung: 
Artificial Intelligence is a disruptive technology developed during the 20th century, which has undergone an accelerated evolution, underpinning solutions to complex problems in the business world. Neural Networks, Machine Learning, or Deep Learning are concepts currently associated with terms such as digital marketing, decision making, industry 4.0 and business digital transformation. Interest in this technology will increase as the competitive advantages of the use of Artificial Intelligence by economic entities is realised. The aim of this research is to analyse the state-of-the-art research of Artificial Intelligence in business. To this end, a bibliometric analysis has been implement using the Web of Science and Scopus online databases. By using a fractional counting method, this paper identifies 11 clusters and the most frequent terms used in Artificial Intelligence research. The present study identifies the main trends in research on Artificial Intelligence in business and proposes future lines of inquiry.
Schlagwörter: 
artificial intelligence
business
economics
bibliometrics
research trends
decision-making
JEL: 
A12
M21
O32
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
1.85 MB





Publikationen in EconStor sind urheberrechtlich geschützt.