Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/317025 
Autor:innen: 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Metrika [ISSN:] 1435-926X [Volume:] 87 [Issue:] 2 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2023 [Pages:] 155-182
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract We review a recent development at the interface between discrete mathematics on one hand and probability theory and statistics on the other, specifically the use of Markov chains and their boundary theory in connection with the asymptotics of randomly growing permutations. Permutations connect total orders on a finite set, which leads to the use of a pattern frequencies. This view is closely related to classical concepts of nonparametric statistics. We give several applications and discuss related topics and research areas, in particular the treatment of other combinatorial families, the cycle view of permutations, and an approach via exchangeability.
Schlagwörter: 
Asymptotics
Boundary theory
Copulas
Exchangeability
Markov chains
Permutations
Pattern frequencies
Ranks
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.