Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/316871 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
CESifo Working Paper No. 11757
Verlag: 
CESifo GmbH, Munich
Zusammenfassung: 
We study how individuals update their beliefs in the presence of competing data-generating processes, or models, that could explain observed data. Through experiments, we identify the weights participants assign to different models and find that the most common updating rule gives full weight to the model that best fits the data. While some participants assign positive weights to multiple models—consistent with Bayesian updating—they often do so in a systematically biased manner. Moreover, these biases in model weighting frequently lead participants to become more certain about a state regardless of the data, violating a core property of Bayesian updating.
Schlagwörter: 
belief updating
narratives
mental models
experiments
JEL: 
D83
D90
C90
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.