Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315863 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] European Actuarial Journal [ISSN:] 2190-9741 [Volume:] 14 [Issue:] 2 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 495-524
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract A Neural Network (NN) approach for the modelling of mortality rates in a multi-population framework is compared to three classical mortality models. The NN setup contains two instances of Recurrent NNs, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) networks. The stochastic approaches comprise the Li and Lee model, the Common Age Effect model of Kleinow, and the model of Plat. All models are applied and compared in a large case study on decades of data of the Italian population as divided in counties. In this case study, a new index of multiple deprivation is introduced and used to classify all Italian counties based on socio-economic indicators, sourced from the local office of national statistics (ISTAT). The aforementioned models are then used to model and predict mortality rates of groups of different socio-economic characteristics, sex, and age.
Schlagwörter: 
Case Study on Mortality
Longevity Risk
Neural Network
Multi-population
Deprivation Index
Socio-economic characteristics
Italian data
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.