Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315084 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Computational Management Science [ISSN:] 1619-6988 [Volume:] 21 [Issue:] 2 [Article No.:] 41 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2024
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Higher order risk measures are stochastic optimization problems by design, and for this reason they enjoy valuable properties in optimization under uncertainties. They nicely integrate with stochastic optimization problems, as has been observed by the intriguing concept of the risk quadrangles, for example. Stochastic dominance is a binary relation for random variables to compare random outcomes. It is demonstrated that the concepts of higher order risk measures and stochastic dominance are equivalent, they can be employed to characterize the other. The paper explores these relations and connects stochastic orders, higher order risk measures and the risk quadrangle. Expectiles are employed to exemplify the relations obtained.
Schlagwörter: 
Higher order risk measure
Higher order stochastic dominance
Risk quadrangle
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.