Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315072 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Statistical Methods & Applications [ISSN:] 1613-981X [Volume:] 33 [Issue:] 3 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 807-826
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract Stochastic frontier models commonly assume positive skewness for the inefficiency term. However, when this assumption is violated, efficiency scores converge to unity. The potential endogeneity of model regressors introduces another empirical challenge, impeding the identification of causal relationships. This paper tackles these issues by employing an instrument-free estimation method that extends joint estimation through copulas to handle endogenous regressors and skewness issues. The method relies on the Gaussian copula function to capture dependence between endogenous regressors and composite errors with a simultaneous consideration of positively or negatively skewed inefficiency. Model parameters are estimated through maximum likelihood, and Monte Carlo simulations are employed to evaluate the performance of the proposed estimation procedures in finite samples. This research contributes to the stochastic frontier models and production economics literature by presenting a flexible and parsimonious method capable of addressing wrong skewness of inefficiency and endogenous regressors simultaneously. The applicability of the method is demonstrated through an empirical example.
Schlagwörter: 
Stochastic frontier analysis
Skewness
Endogenous regressors
Copula function
Maximum likelihood
Persistent Identifier der Erstveröffentlichung: 
Sonstige Angaben: 
C13;C14;C21;C51
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.