Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314961 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 100 [Issue:] 1 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 153-173
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract In multi-criteria optimization problems that originate from real-world decision making tasks, we often find the following structure: There is an underlying continuous, possibly even convex model for the multiple outcome measures depending on the design variables, but these outcomes are additionally assigned to discrete categories according to their desirability for the decision maker. Multi-criteria deliberations may then take place at the level of these discrete labels, while the calculation of a specific design remains a continuous problem. In this work, we analyze this type of problem and provide theoretical results about its solution set. We prove that the discrete decision problem can be tackled by solving scalarizations of the underlying continuous model. Based on our analysis we propose multiple algorithmic approaches that are specifically suited to handle these problems. We compare the algorithms based on a set of test problems. Furthermore, we apply our methods to a real-world radiotherapy planning example.
Schlagwörter: 
Multi-criteria optimization
Decision making
Non-linear optimization
Pareto front approximation
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.