Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314868 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Modern Supply Chain Research and Applications [ISSN:] 2631-3871 [Volume:] 2 [Issue:] 2 [Year:] 2020 [Pages:] 63-81
Verlag: 
Emerald, Bingley
Zusammenfassung: 
Purpose - There is great uncertainty and volatility in the evaluation and measurement of green supplier satisfaction. The purpose of this paper is to fill this gap based on the information entropy theory (IET) to describe the probability of green supplier satisfaction degree. Design/methodology/approach - The authors introduce a formal model using analytic hierarchy process (AHP), IET and entropy technique for order preference by similarity to an ideal solution (TOPSIS) method to evaluate green supplier satisfaction and promote them for the better implementation of green supply chain management practices. Findings - The first finding is developing an effective framework for green supplier satisfaction, incorporating various measures of environmental dimension. Second, a hybrid uncertainty decision method is introduced, by integrating AHP and IET and entropy-TOPSIS. Research limitations/implications - One of the main limitations of the research is that the authors introduced a conceptual example. Real-world applications need to investigate the accuracy and effectiveness of these measures, and the operational feasibility of this method. Originality/value - This is one of the first works to provide a comprehensive appraisal model for evaluation of green supplier satisfaction. This study and research method can form general guidelines, and organizations can increasingly benefit from using green supplier satisfaction evaluation as a management tool. Green supplier satisfaction evaluation is just the beginning.
Schlagwörter: 
AHP
Green supplier satisfaction
Information entropy theory
Measures
TOPSIS
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
250.08 kB





Publikationen in EconStor sind urheberrechtlich geschützt.