Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314469 
Titel (übersetzt): 
Estrategias de precios e incertidumbre económica: Un caso de estudio aplicado al sector farmacéutico argentino usando aprendizaje automatizado
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Revista de Métodos Cuantitativos para la Economía y la Empresa [ISSN:] 1886-516X [Volume:] 38 [Year:] 2024 [Pages:] 1-16
Verlag: 
Universidad Pablo de Olavide, Sevilla
Zusammenfassung: 
Introduction: In August 2019 an unexpected presidential election result caused a change in expected exchange and inflation rates. The objective of this study is to analyze the relation between market share and the decision of increasing prices in the pharmaceutical industry in Argentina.Methods: Online weekly data on variations of some medicine's prices were obtained using web scraping, and then classification algorithms (Random Forests, Gradient Boosting Machine and logistic regression) were applied.Results: The results were mixed: market share was found to have high importance in tree-based methods. (Random Forests and Gradient Boosting Machine). However, in logistic regression, this variable wasn't significant. Conclusions: Exchange rate volatility after the election result caused several changes on price expectations, and pharmaceutical market structure influenced the resulting price reactions. Laboratories which owned a higher market share rose their prices first.
Schlagwörter: 
Pharmaceutical market
uncertainty
machine learning
JEL: 
C89
I10
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
431.63 kB





Publikationen in EconStor sind urheberrechtlich geschützt.