Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/313829 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] OR Spectrum [ISSN:] 1436-6304 [Volume:] 46 [Issue:] 4 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 1329-1365
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract In this paper, we present a solution method for the multidimensional knapsack problem (MKP) and the knapsack problem with forfeit sets (KPFS) using a population-based matheuristic approach. Specifically, the learning mechanism of the fixed set search (FSS) metaheuristic is combined with the use of integer programming for solving subproblems. This is achieved by introducing a new ground set of elements that can be used for both the MKP and the KPFS that aim to maximize the information provided by the fixed set. The method for creating fixed sets is also adjusted to enhance the diversity of generated solutions. Compared to state-of-the-art methods for the MKP and the KPFS, the proposed approach offers an implementation that can be easily extended to other variants of the knapsack problem. Computational experiments indicate that the matheuristic FSS is highly competitive to best-performing methods from the literature. The proposed approach is robust in the sense of having a good performance for a wide range of parameter values of the method.
Schlagwörter: 
Metaheuristics
Multidimensional knapsack problem
Knapsack problem with forfeit sets
Fixed set search
Matheuristic
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.