Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312828 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Journal of Heuristics [ISSN:] 1572-9397 [Volume:] 29 [Issue:] 4 [Publisher:] Springer US [Place:] New York, NY [Year:] 2023 [Pages:] 435-460
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
In the family traveling salesman problem (FTSP), there is a set of cities which are divided into a number of clusters called families. The salesman has to find a shortest possible tour visiting a specific number of cities from each of the families without any restriction of visiting one family before starting the visit of another one. In this work, the general concept of the Partial OPtimization Metaheuristic Under Special Intensification Conditions is linked with the exact optimization by a classical solver using a mathematical programming formulation for the FTSP to develop a matheuristic. Moreover, a genetic and a simulated annealing algorithm are used as metaheuristics embedded in the approach. The method is examined on a set of benchmark instances and its performance is favorably compared with a state-of-the-art approach from literature. Moreover, a careful analysis of the specific components of the approach is undertaken to provide insights into the impact of their interplay.
Schlagwörter: 
Matheuristic
Partial optimization metaheuristic under special intensification conditions
Genetic algorithm
Family traveling salesman problem
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.