Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312381 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Management Review Quarterly [ISSN:] 2198-1639 [Volume:] 74 [Issue:] 2 [Publisher:] Springer International Publishing [Place:] Cham [Year:] 2023 [Pages:] 867-907
Verlag: 
Springer International Publishing, Cham
Zusammenfassung: 
Digitalization and technologization affect numerous domains, promising advantages but also entailing risks. Hence, when decision-makers in highly-regulated domains like Finance implement these technological advances—especially Artificial Intelligence—regulators prescribe high levels of transparency, assuring the traceability of decisions for third parties. Explainable Artificial Intelligence (XAI) is of tremendous importance in this context. We provide an overview of current research on XAI in Finance with a systematic literature review screening 2,022 articles from leading Finance, Information Systems, and Computer Science outlets. We identify a set of 60 relevant articles, classify them according to the used XAI methods and goals that they aim to achieve, and provide an overview of XAI methods used in different Finance areas. Areas like risk management, portfolio optimization, and applications around the stock market are well-researched, while anti-money laundering is understudied. Researchers implement both transparent models and post-hoc explainability, while they recently favored the latter.
Schlagwörter: 
Explainable artificial intelligence
Finance
Systematic literature review
Machine learning
Review
JEL: 
G00
L50
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.