Please use this identifier to cite or link to this item:
Shklyar, Sergiy
Schneeweiss, Hans
Kukush, Alexander
Year of Publication: 
Series/Report no.: 
Discussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München 445
We consider a polynomial regression model, where the covariate is measured with Gaussian errors. The measurement error variance is supposed to be known. The covariate is normally distributed with known mean and variance. Quasi Score (QS) and Corrected Score (CS) are two consistent estimation methods, where the first makes use of the distribution of the covariate (structural method), while the latter does not (functional method). It may therefore be surmised that the former method is (asymptotically) more efficient than the latter one. This can, indeed, be proved for the regression parameters. We do this by introducing a third, so-called Simple Score (SS),estimator, the efficiency of which turns out to be intermediate between QS and CS. When one includes structural and functional estimators for the variance in the equation, SS is still more efficient than CS. When the mean and variance of the covariate are not known and have to be estimated as well, one can still maintain that QS is more efficient than SS for the regression parameters.
Quasi Score
Corrected Score
Polynomial Model
Measurement Errors
Structural Methods
Functional Methods
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
160.72 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.