Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310437 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Discussion Papers No. 1018
Verlag: 
Statistics Norway, Research Department, Oslo
Zusammenfassung: 
This paper examines the forecast accuracy of cointegrated vector autoregressive models when confronted with extreme observations at the end of the sample period. It focuses on comparing two outlier correction methods, additive outliers and innovational outliers, within a forecasting framework for macroeconomic variables. Drawing on data from the COVID-19 pandemic, the study empirically demonstrates that cointegrated vector autoregressive models incorporating additive outlier corrections outperform both those with innovational outlier corrections and no outlier corrections in forecasting post-pandemic household consumption. Theoretical analysis and Monte Carlo simulations further support these findings, showing that additive outlier adjustments are particularly effective when macroeconomic variables rapidly return to their initial trajectories following short-lived extreme observations, as in the case of pandemics. These results carry important implications for macroeconomic forecasting, emphasising the usefulness of additive outlier corrections in enhancing forecasts after periods of transient extreme observations.
Schlagwörter: 
Extreme observations
additive outliers
innovational outliers
cointegrated vector autoregressive models
forecasting
JEL: 
C32
C53
E21
E27
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
678.51 kB





Publikationen in EconStor sind urheberrechtlich geschützt.