Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310185 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Logistics [ISSN:] 2305-6290 [Volume:] 5 [Issue:] 3 [Article No.:] 62 [Year:] 2021 [Pages:] 1-16
Verlag: 
MDPI, Basel
Zusammenfassung: 
The main objective of the paper is to analyze and synthesize existing scientific literature related to supply chain areas where machine learning (ML) has already been implemented within the supply chain risk management (SCRM) field, both in theory and in practice. Furthermore, we analyzed which risks were addressed in the use cases as well as how ML might shape SCRM. For this purpose, we conducted a systematic literature review. The results showed that the applied examples relate primarily to the early identification of production, transport, and supply risks in order to counteract potential supply chain problems quickly. Through the analyzed case studies, we were able to identify the added value that ML integration can bring to the SCRM (e.g., the integration of new data sources such as social media or weather data). From the systematic literature analysis results, we developed four propositions, which can be used as motivation for further research.
Schlagwörter: 
cases
machine learning
propositions
supply chain
supply chain risk management
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
809.49 kB





Publikationen in EconStor sind urheberrechtlich geschützt.