Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310090 
Erscheinungsjahr: 
2017
Quellenangabe: 
[Journal:] Logistics [ISSN:] 2305-6290 [Volume:] 1 [Issue:] 2 [Year:] 2017 [Pages:] 1-28
Verlag: 
MDPI, Basel
Zusammenfassung: 
Connected devices, sensors, and mobile apps make the retail sector a relevant testbed for big data tools and applications. We investigate how big data is, and can be used in retail operations. Based on our state-of-the-art literature review, we identify four themes for big data applications in retail logistics: availability, assortment, pricing, and layout planning. Our semi-structured interviews with retailers and academics suggest that historical sales data and loyalty schemes can be used to obtain customer insights for operational planning, but granular sales data can also benefit availability and assortment decisions. External data such as competitors' prices and weather conditions can be used for demand forecasting and pricing. However, the path to exploiting big data is not a bed of roses. Challenges include shortages of people with the right set of skills, the lack of support from suppliers, issues in IT integration, managerial concerns including information sharing and process integration, and physical capability of the supply chain to respond to real-time changes captured by big data. We propose a data maturity profile for retail businesses and highlight future research directions.
Schlagwörter: 
assortment
availability
big data
layout
logistics
maturity
pricing
replenishment
retail operations
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
884.77 kB





Publikationen in EconStor sind urheberrechtlich geschützt.