Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309910 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Statistical Papers [ISSN:] 1613-9798 [Volume:] 64 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 1095-1117
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Improvements in technology lead to increasing availability of large data sets which makes the need for data reduction and informative subsamples ever more important. In this paper we construct D -optimal subsampling designs for polynomial regression in one covariate for invariant distributions of the covariate. We study quadratic regression more closely for specific distributions. In particular we make statements on the shape of the resulting optimal subsampling designs and the effect of the subsample size on the design. To illustrate the advantage of the optimal subsampling designs we examine the efficiency of uniform random subsampling.
Schlagwörter: 
Subdata
D-optimality
Massive data
Polynomial regression
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.