Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309582 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Computational Optimization and Applications [ISSN:] 1573-2894 [Volume:] 87 [Issue:] 3 [Publisher:] Springer US [Place:] New York, NY [Year:] 2022 [Pages:] 711-751
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
We analyze optimal control problems for two-phase Navier-Stokes equations with surface tension. Based on Lp-maximal regularity of the underlying linear problem and recent well-posedness results of the problem for sufficiently small data we show the differentiability of the solution with respect to initial and distributed controls for appropriate spaces resulting from the Lp-maximal regularity setting. We consider first a formulation where the interface is transformed to a hyperplane. Then we deduce differentiability results for the solution in the physical coordinates. Finally, we state an equivalent Volume-of-Fluid type formulation and use the obtained differentiability results to derive rigorosly the corresponding sensitivity equations of the Volume-of-Fluid type formulation. For objective functionals involving the velocity field or the discontinuous pressure or phase indciator field we derive differentiability results with respect to controls and state formulas for the derivative. The results of the paper form an analytical foundation for stating optimality conditions, justifying the application of derivative based optimization methods and for studying the convergence of discrete sensitivity schemes based on Volume-of-Fluid discretizations for optimal control of two-phase Navier-Stokes equations.
Schlagwörter: 
Two-phase flow
Surface tension
Sharp interface
Navier-Stokes equations
Volume of fluid
Differentiability
Optimal control
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.