Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309517 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 100 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 385-410
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. In this paper we present a generator for test instances to evaluate solvers for multiobjective mixed-integer linear and nonlinear optimization problems. Based on test instances for purely continuous and purely integer problems with known efficient solutions and known nondominated points, suitable multiobjective mixed-integer test instances can be generated. The special structure allows to construct instances scalable in the number of variables and objective functions. Moreover, it allows to control the resulting efficient and nondominated sets as well as the number of efficient integer assignments.
Schlagwörter: 
Multiobjective optimization
Mixed-integer optimization
Test instances
Nonconvex optimization
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.