Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/308058 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Accountancy, Economics, and Finance Working Papers No. 2024-13
Verlag: 
Heriot-Watt University, Department of Accountancy, Economics, and Finance, Edinburgh
Zusammenfassung: 
This paper introduces conformal inference, a powerful and flexible framework for constructing prediction intervals with guaranteed coverage in finite samples. Unlike conventional methods, conformal inference makes no assumptions about the underlying data distribution other than exchangeability. The paper begins with some simple examples of full and split conformal prediction that highlight the key assumption of exchangeability. We then provide more formal treatments of full and split conformal prediction along with extensions of the basic framework, including the Jackknife+ and CV+ algorithms, both of which offer a better balance between computational and statistical efficiency compared to full and split conformal prediction. The paper then discusses the limitations to achieving exact conditional coverage and several methods that aim to improve conditional coverage in practice. The final section briefly discusses areas of current research the software options for implementing conformal methods.
Schlagwörter: 
conformal inference
conformal prediction
distribution-free inference
machine learning
JEL: 
C12
C14
C53
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
687.02 kB





Publikationen in EconStor sind urheberrechtlich geschützt.