Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/307853 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Economic Review: Journal of Economics and Business [ISSN:] 2303-680X [Volume:] 20 [Issue:] 2 [Year:] 2022 [Pages:] 53-64
Verlag: 
University of Tuzla, Faculty of Economics, Tuzla
Zusammenfassung: 
Machine learning, or as it is also called automated learning, is a special subfield of scientific information technologies. The name "machine learning" refers to the automated detection of meaningful patterns in large data sets. Machine learning is gaining importance in many different areas of the economy. One of those areas is the prediction and prevention of consumer churn. There are two basic types of consumer churn, complete churn and partial churn. Machine learning is used to determine the most significant characteristics that play a role in the churn/retention of consumers, and with the help of machine learning it is possible to establish the probability of churn for each individual consumer. Some of the most commonly used machine learning algorithms for this issue are Logistic Regression, Gaussian Naive Bayes, Bernoulli Naive Bayes, Decision Tree, and Random Forest.
Schlagwörter: 
machine learning
customer churn
customer retention
JEL: 
L86
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
296.06 kB





Publikationen in EconStor sind urheberrechtlich geschützt.