Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/307602 
Autor:innen: 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
University of Göttingen Working Paper in Economics No. 436
Verlag: 
University of Göttingen, Department of Economics, Göttingen
Zusammenfassung: 
This paper presents a high-frequency structural VAR framework for identifying oil price shocks and examining their uncertainty transmission in the U.S. macroeconomy and financial markets. Leveraging the stylized features of financial data - specifically, volatility clustering effectively captured by a GARCH model - this approach achieves global identification of shocks while allowing for volatility spillovers across them. Findings reveal that increased variance in aggregate demand shocks increases the oil-equity price covariance, while precautionary demand shocks, triggering heightened investor risk aversion, significantly diminish this covariance. A real-time forecast error variance decomposition further highlights that oil supply uncertainty was the primary source of oil price forecast uncertainty from late March to early May 2020, yet it contributed minimally during the 2022 Russian invasion of Ukraine.
Schlagwörter: 
Oil price
uncertainty
impulse response functions
structural VAR
forecast error variance decomposition
GARCH
JEL: 
Q43
Q47
C32
C58
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.42 MB





Publikationen in EconStor sind urheberrechtlich geschützt.