Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/307363 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
CESifo Working Paper No. 11433
Verlag: 
CESifo GmbH, Munich
Zusammenfassung: 
We assess the impact of discrimination on Black individuals' job networks across the U.S. using a two-stage field experiment with 400+ fictitious LinkedIn profiles. In the first stage, we vary race via AI-generated images only and find that Black profiles' connection requests are 13 percent less likely to be accepted. Based on users' CVs, we find widespread discrimination across social groups. In the second stage, we exogenously endow Black and White profiles with the same networks and ask connected users for career advice. We find no evidence of direct discrimination in information provision. However, when taking into account differences in the composition and size of networks, Black profiles receive substantially fewer replies. Our findings suggest that gatekeeping is a key driver of Black-White disparities.
Schlagwörter: 
discrimination
job networks
labor markets
field experiment
JEL: 
J71
J15
C93
J46
D85
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.