Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/307140 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Bank of Finland Research Discussion Papers No. 14/2024
Verlag: 
Bank of Finland, Helsinki
Zusammenfassung: 
We introduce a frequency-domain forecast combination method that leverages time- and frequencydependent predictability to enhance forecast accuracy. By decomposing both the target variables (equity premium and real GDP growth) and predictor variables into distinct frequency components, this method aligns forecasts with frequency-specific predictive relationships. This approach yields significantly higher accuracy than traditional time-domain methods, as evidenced by both statistical and economic out-of-sample metrics. Gains are particularly pronounced during recessions, where excluding low-frequency components further enhances forecast precision. Overall, these findings highlight the value of frequency-domain forecasting in capturing complex, time-varying patterns across varied macro-financial contexts.
Schlagwörter: 
forecast combination
frequency domain
equity premium
GDP growth
Haar filter
JEL: 
C58
G11
G17
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.25 MB





Publikationen in EconStor sind urheberrechtlich geschützt.