Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/306649 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Journal of Spatial Econometrics [ISSN:] 2662-298X [Volume:] 3 [Issue:] 1 [Article No.:] 2 [Publisher:] Springer International Publishing [Place:] Cham [Year:] 2022
Verlag: 
Springer International Publishing, Cham
Zusammenfassung: 
The steadily growing access to high-quality spatio-temporal crime count data with a high level of spatial detail allows to uncover interesting relationships between crime types within and between small regional units. Data coherent forecasting of such counts has to take the integer and non-negative nature of the data into account. Spatial panel data models that meet the criterion of coherency are relatively sparse. This paper proposes a new spatial panel regression framework with fixed effects to overcome these shortcomings. Depending on whether time dynamic effects are included in the model specification, estimation and inference are based either on a pseudo maximum likelihood method or on quasi-differenced generalized methods of moments. The models' usefulness is demonstrated in a forecasting exercise of monthly crime counts at census tract level from Pittsburgh, Pennsylvania.
Schlagwörter: 
Count data
Spatial panel models
Fixed effects
Predictive modeling
JEL: 
C33
C53
K42
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.