Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/305728 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
IZA Discussion Papers No. 17286
Verlag: 
Institute of Labor Economics (IZA), Bonn
Zusammenfassung: 
This study expands the inventory of green job titles by incorporating a global perspective and using contemporary sources. It leverages natural language processing, specifically a retrieval-augmented generation model, to identify green job titles. The process began with a search of academic literature published after 2008 using the official APIs of Scopus and Web of Science. The search yielded 1,067 articles, from which 695 unique potential green job titles were identified. The retrieval-augmented generation model used the advanced text analysis capabilities of Generative Pre-trained Transformer 4, providing a reproducible method to categorize jobs within various green economy sectors. The research clustered these job titles into 25 distinct sectors. This categorization aligns closely with established frameworks, such as the U.S. Department of Labor's Occupational Information Network, and suggests potential new categories like green human resources. The findings demonstrate the efficacy of advanced natural language processing models in identifying emerging green job roles, contributing significantly to the ongoing discourse on the green economy transition.
Schlagwörter: 
AI
text mining
occupational classification
green jobs
green economy
JEL: 
J23
Q52
O14
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.04 MB





Publikationen in EconStor sind urheberrechtlich geschützt.