Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/305588 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
CESifo Working Paper No. 11346
Verlag: 
CESifo GmbH, Munich
Zusammenfassung: 
There is a rapidly advancing literature on the macroeconomics of climate change. This review focuses on developments in the construction and solution of structural integrated assessment models (IAMs), highlighting the marriage of state-of-the-art natural science with general equilibrium theory. We discuss challenges in solving dynamic stochastic IAMs with sharp nonlinearities, multiple regions, and multiple sources of risk. Key innovations in deep learning and other machine learning approaches overcome many computational challenges and enhance the accuracy and relevance of policy findings. We conclude with an overview of recent applications of IAMs and key policy insights.
Schlagwörter: 
climate change
integrated assessment model
dynamic stochastic general equilibrium
JEL: 
C61
E27
Q50
Q51
Q54
Q58
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.