Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/305214 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Computational Optimization and Applications [ISSN:] 1573-2894 [Volume:] 86 [Issue:] 3 [Publisher:] Springer US [Place:] New York, NY [Year:] 2022 [Pages:] 1081-1116
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
We consider nonlinear model predictive control (MPC) with multiple competing cost functions. In each step of the scheme, a multiobjective optimal control problem with a nonlinear system and terminal conditions is solved. We propose an algorithm and give performance guarantees for the resulting MPC closed loop system. Thereby, we significantly simplify the assumptions made in the literature so far by assuming strict dissipativity and the existence of a compatible terminal cost for one of the competing objective functions only. We give conditions which ensure asymptotic stability of the closed loop and, what is more, obtain performance estimates for all cost criteria. Numerical simulations on various instances illustrate our findings. The proposed algorithm requires the selection of an efficient solution in each iteration, thus we examine several selection rules and their impact on the results. and we also examine numerically how different selection rules impact the results.
Schlagwörter: 
Multiobjective Model Predictive Control
Multiobjective Optimal Control
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.