Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/303832 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Cogent Economics & Finance [ISSN:] 2332-2039 [Volume:] 10 [Issue:] 1 [Article No.:] 2132638 [Year:] 2022 [Pages:] 1-18
Verlag: 
Taylor & Francis, Abingdon
Zusammenfassung: 
This study aims to track the structural development of academic research on credit risk assessment and big data using bibliometric analysis. The bibliography is obtained from the Scopus database and contains all studies with citations published between 2012 and 2021. The study's findings suggest that credit risk assessment and big data are vast fields that have increased significantly in the last nine years. Chinese researchers and organizations contributed the most to the documents. The current study concludes that several possibilities exist to improve the knowledge of credit risk assessment and big data.
Schlagwörter: 
bibliometric
big data
credit risk
network mapping
risk assessment
JEL: 
C89
G32
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.