Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/301888 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Statistics in Transition new series (SiTns) [ISSN:] 2450-0291 [Volume:] 23 [Issue:] 4 [Year:] 2022 [Pages:] 37-58
Verlag: 
Sciendo, Warsaw
Zusammenfassung: 
Partial ranked set sampling (PRSS) is a cost-effective sampling method. It is a combination of simple random sample (SRS) and ranked set sampling (RSS) designs. The PRSS method allows flexibility for the experimenter in selecting the sample when it is either difficult to rank the units within each set with full confidence or when experimental units are not available. In this article, we introduce and define the likelihood function of any probability distribution under the PRSS scheme. The performance of the maximum likelihood estimators is examined when the available data are assumed to have an exponentiated exponential (EE) distribution via some selective RSS schemes as well as SRS. The suggested ranked schemes include the PRSS, RSS, neoteric RSS (NRSS), and extreme RSS (ERSS). An intensive simulation study was conducted to compare and explore the behaviour of the proposed estimators. The study demonstrated that the maximum likelihood estimators via PRSS, NRSS, ERSS, and RSS schemes are more efficient than the corresponding estimators under SRS. A real data set is presented for illustrative purposes.
Schlagwörter: 
exponentiated exponential distribution
partial ranked set sampling
neoteric ranked set sampling
maximum likelihood method
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.