Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/297250 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
IFN Working Paper No. 1454
Verlag: 
Research Institute of Industrial Economics (IFN), Stockholm
Zusammenfassung: 
The application of machine learning (ML) to big data has become increasingly important. We propose a model where firms have access to the same ML, but incumbents have access to historical data. We show that big data raises entrepreneurial barriers making the creative destruction process less destructive (less business-stealing) if the entrepreneur has weak access to the incumbent's data. It is also shown that this induces entrepreneurs to take on more risk and be more creative. Policies making data generally available may therefore be suboptimal. Supporting entrepreneurs' access to ML might be preferable since it stimulates creative entrepreneurship
Schlagwörter: 
Machine Learning
Big Data
Creative Destruction
Entrepreneurship
Operational Data
JEL: 
L1
L2
M13
O3
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.37 MB





Publikationen in EconStor sind urheberrechtlich geschützt.