Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/295112 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Spatial and Spatio-temporal Epidemiology [Volume:] 47 [Article No.:] 100605 [Publisher:] Elsevier BV [Place:] Amsterdam [Year:] 2023
Verlag: 
Elsevier BV, Amsterdam
Zusammenfassung: 
While pandemic waves are often studied on the national scale, they typically are not distributed evenly within countries. This study presents a novel approach to analyzing the spatial-temporal dynamics of the COVID-19 pandemic in Germany. By using a composite indicator of pandemic severity and subdividing the pandemic into fifteen phases, we were able to identify similar trajectories of pandemic severity among all German counties through hierarchical clustering. Our results show that the hotspots and cold spots of the first four waves were relatively stationary in space. This highlights the importance of examining pandemic waves on a regional scale to gain a more comprehensive understanding of their dynamics. By combining spatial autocorrelation and spatial-temporal clustering of time series, we were able to identify important patterns of regional anomalies, which can help target more effective public health interventions on a regional scale.
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.