Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/287325 
Autor:innen: 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Mathematics and Financial Economics [ISSN:] 1862-9660 [Volume:] 16 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2021 [Pages:] 317-343
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
In this paper, we study term structure movements in the spirit of Heath et al. (Econometrica 60(1):77–105, 1992) under volatility uncertainty. We model the instantaneous forward rate as a diffusion process driven by a G-Brownian motion. The G-Brownian motion represents the uncertainty about the volatility. Within this framework, we derive a sufficient condition for the absence of arbitrage, known as the drift condition. In contrast to the traditional model, the drift condition consists of several equations and several market prices, termed market price of risk and market prices of uncertainty, respectively. The drift condition is still consistent with the classical one if there is no volatility uncertainty. Similar to the traditional model, the risk-neutral dynamics of the forward rate are completely determined by its diffusion term. The drift condition allows to construct arbitrage-free term structure models that are completely robust with respect to the volatility. In particular, we obtain robust versions of classical term structure models.
Schlagwörter: 
Term structure of interest rates
No-arbitrage
Ambiguous volatility
Knightian uncertainty
Model uncertainty
Robust finance
JEL: 
G30
G12
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.