Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/278306 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
ECB Working Paper No. 2767
Verlag: 
European Central Bank (ECB), Frankfurt a. M.
Zusammenfassung: 
We develop a measure of overall financial risk in China by applying machine learning techniques to textual data. A pre-defined set of relevant newspaper articles is first selected using a specific constellation of risk-related keywords. Then, we employ topical modelling based on an unsupervised machine learning algorithm to decompose financial risk into its thematic drivers. The resulting aggregated indicator can identify major episodes of overall heightened financial risks in China, which cannot be consistently captured using financial data. Finally, a structural VAR framework is employed to show that shocks to the financial risk measure have a significant impact on macroeconomic and financial variables in China and abroad.
Schlagwörter: 
China
financial risk
textual analysis
machine learning
topic modelling
LDA
JEL: 
C32
C65
E32
F44
G15
Persistent Identifier der Erstveröffentlichung: 
ISBN: 
978-92-899-5509-6
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
4.29 MB





Publikationen in EconStor sind urheberrechtlich geschützt.