Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/266305 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Statistics in Transition new series (SiTns) [ISSN:] 2450-0291 [Volume:] 23 [Issue:] 2 [Publisher:] Sciendo [Place:] Warsaw [Year:] 2022 [Pages:] 17-32
Verlag: 
Sciendo, Warsaw
Zusammenfassung: 
In the present study, we consider the problem of missing and extreme values for the estimation of population variance. The presence of extreme values either in the study variable, or the auxiliary variable, or in both of them, can adversely affect the performance of the estimation procedure. We consider three different situations for the presence of extreme values and also consider jackknife variance estimators for the population variance by handling these extreme values under stratified random sampling. Bootstrap technique ABB is carried out to understand the relative relationship more precisely.
Schlagwörter: 
adjusted imputation
jackknife variance estimators
linearized jackknife,missing values
winsorized variance
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.