Abstract:
In this paper, we analysed the heavy-tailed behaviour in the dynamics of housing-price returns in the United States. We investigated the sources of heavy tails by estimating autoregressive models in which innovations can be subject to GARCH effects and/or non-Gaussianity. Using monthly data from January 1954 to September 2019, the properties of the models were assessed both within- and out-of-sample. We found strong evidence in favour of modelling both GARCH effects and non-Gaussianity. Accounting for these properties improves within-sample performance as well as point and density forecasts.