Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/258097 
Year of Publication: 
2021
Citation: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 1 [Article No.:] 7 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-14
Publisher: 
MDPI, Basel
Abstract: 
One crucial task of actuaries is to structure data so that observed events are explained by their inherent risk factors. They are proficient at generalizing important elements to obtain useful forecasts. Although this expertise is beneficial when paired with conventional statistical models, it becomes limited when faced with massive unstructured datasets. Moreover, it does not take profit from the representation capabilities of recent machine learning algorithms. In this paper, we present an approach to automatically extract textual features from a large corpus that departs from the traditional actuarial approach. We design a neural architecture that can be trained to predict a phenomenon using words represented as dense embeddings. We then extract features identified as important by the model to assess the relationship between the words and the phenomenon. The technique is illustrated through a case study that estimates the number of cars involved in an accident using the accident's description as input to a Poisson regression model. We show that our technique yields models that are more performing and interpretable than some usual actuarial data mining baseline.
Subjects: 
data mining
data representation
hierarchical attention neural networks
insurance big data
natural language processing
representational learning
unstructured data
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.