Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/257971 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 8 [Issue:] 1 [Article No.:] 16 [Publisher:] MDPI [Place:] Basel [Year:] 2020 [Pages:] 1-17
Verlag: 
MDPI, Basel
Zusammenfassung: 
We introduce a neural network approach for assessing the risk of a portfolio of assets and liabilities over a given time period. This requires a conditional valuation of the portfolio given the state of the world at a later time, a problem that is particularly challenging if the portfolio contains structured products or complex insurance contracts which do not admit closed form valuation formulas. We illustrate the method on different examples from banking and insurance. We focus on value-at-risk and expected shortfall, but the approach also works for other risk measures.
Schlagwörter: 
importance sampling
asset-liability risk
expected shortfall
neural networks
risk capital
solvency calculation
value-at-risk
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.