Abstract:
In this paper, an efficient implementation of the Tau method is presented for finding the open-loop Nash equilibrium of noncooperative nonzero-sum two-player differential game problems with a finite-time horizon. Regarding this approach, the two-point boundary value problem derived from Pontryagin's maximum principle is reduced to a system of algebraic equations that can be solved numerically. Finally, a differential game arising from bioeconomics among firms harvesting a common renewable resource is included to illustrate the accuracy and efficiency of the proposed method and a comparison is made with the result obtained by fourth order Runge-Kutta method.