Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/253613 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 12 [Issue:] 4 [Publisher:] The Econometric Society [Place:] New Haven, CT [Year:] 2021 [Pages:] 1171-1196
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative effectiveness of alternative treatment paths. For a rich class of dynamic causal effects, we provide a nonparametric estimator that is unbiased over the randomization distribution and derive its finite population limiting distribution as either the sample size or the duration of the experiment increases. We develop two methods for inference: a conservative test for weak null hypotheses and an exact randomization test for sharp null hypotheses. We further analyze the finite population probability limit of linear fixed effects estimators. These commonly-used estimators do not recover a causally interpretable estimand if there are dynamic causal effects and serial correlation in the assignments, highlighting the value of our proposed estimator.
Schlagwörter: 
Panel data
dynamic causal effects
potential outcomes
finite population
nonparametric
JEL: 
C14
C21
C23
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
370.78 kB





Publikationen in EconStor sind urheberrechtlich geschützt.