Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/25164
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrätschmer, Volkeren_US
dc.date.accessioned2007-01-15en_US
dc.date.accessioned2009-07-23T14:44:22Z-
dc.date.available2009-07-23T14:44:22Z-
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/10419/25164-
dc.description.abstractThe new aspect is that neither assumptions on compactness of the inner approximating lattices nor nonsequential continuity properties for the measures will be imposed. As a providing step also a generalization of the classical Portmanteau lemma will be established. The obtained characterizations of compact subsets w.r.t. the weak topology encompass several known ones from literature. The investigations rely basically on the inner extension theory for measures which has been systemized recently by König ([8], [10],[12]).en_US
dc.language.isoengen_US
dc.publisher|aSFB 649, Economic Risk|cBerlinen_US
dc.relation.ispartofseries|aSFB 649 discussion paper|x2006,081en_US
dc.subject.jelC65en_US
dc.subject.ddc330en_US
dc.subject.keywordInner premeasuresen_US
dc.subject.keywordweak topologyen_US
dc.subject.keywordgeneralized Portmanteau lemmaen_US
dc.titleCompactness in spaces of inner regular measures and a general Portmanteau lemmaen_US
dc.type|aWorking Paperen_US
dc.identifier.ppn522567193en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-

Files in This Item:
File
Size
523.92 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.