Please use this identifier to cite or link to this item:
Gapeev, Pavel V.
Year of Publication: 
Series/Report no.: 
SFB 649 Discussion Paper 2006,059
We present solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential free-boundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by the continuous fit. The results can be interpreted as pricing perpetual American lookback options with fixed and floating strikes in a jump-diffusion model.
Document Type: 
Working Paper

Files in This Item:
504.25 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.