Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/246416 
Year of Publication: 
2020
Citation: 
[Journal:] Operations Research Perspectives [ISSN:] 2214-7160 [Volume:] 7 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 1-15
Publisher: 
Elsevier, Amsterdam
Abstract: 
Uncertainty propagation of large-scale discrete supply chains can be prohibitive when numerous events occur during the simulated period and when discrete-event simulations (DES) are costly. We present a time-bucket method to approximate and accelerate the DES of supply chains. Its stochastic version, which we call the L(logistic)-leap method, can be viewed as an extension of the leap methods (e.g., τ-leap [36]and D-leap [6] developed in the chemical engineering community for the acceleration of stochastic DES of chemical reactions). The L-leap method instantaneously updates the system state vector at discrete time points, and the production rates and policies of a supply chain are assumed to be stationary during each time bucket. We propose using the multilevel Monte Carlo (MLMC) method to efficiently propagate the uncertainties in a supply chain network, where the levels are naturally defined by the sizes of the time buckets of the simulations. We demonstrate the efficiency and accuracy of our methods using four numerical examples derived from a real-world manufacturing material flow application. In these examples, our multilevel L-leap approach can be faster than the standard Monte Carlo (MC) method by one or two orders of magnitude without compromising accuracy.
Subjects: 
Uncertainty modeling
Discrete event simulation
Multilevel Monte Carlo
L-leap
Supply chain
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.