Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/244147 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 1581-1589
Publisher: 
Elsevier, Amsterdam
Abstract: 
Algorithms are used to optimize both single and multi-objective system limits. This research aimed to detect the optimal location and size of the DGs, which can significantly minimize power loss and improve the stability of the voltage. The research uses binary particle swarm optimization and shuffled frog leap (BPSO-SLFA) algorithms for simulation and testing of an optimal power flow (OPF) on 33 and 69 bus radial distribution system. The result shows that the algorithms give better DG allocation and minimizes the power losses but at the nascent stage of advancement. The power losses associated with the system have significantly reduced up to 31.8244kW using multi-DGs reconfiguration placement. The outcomes are established to verify the potency of the recommend algorithm to minimize losses, general improvement in voltage profiles and cost saving for various distribution system. However, the proposed methodology can be used as a reliable method in DG settings and sizing in distribution network system which produce better outputs rather than hybrid grey wolf optimization (GWO) and hybrid big bang big crunch.
Subjects: 
Algorithms
Cost saving & shuffled leap algorithm
Distributed generation
Minimize power loss
Optimal power flow
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.