Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243968 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Issue:] 2 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 784-789
Publisher: 
Elsevier, Amsterdam
Abstract: 
The needs to reduce energy consumption have to be applied to all sector, and one of them is transportation. Shipping is the most significant component of it, and therefore optimising a ship performance and reducing its resistance is a subject for many researchers. One of many ways to reduce drag is by utilising an alternative design such as multihull vessel, especially pentamaran, a vessel with five hulls. Destructive interference between their system of waves produced by their hulls is beneficial to reduce power consumption. An experimental test of X-pentamaran model in calm water condition had been conducted to investigate the interference resistance. Wigley hull-form of the model with four asymmetric-hull configurations and three variations of hull separation was investigated. The ship model was towed in a fixed towing condition and calm water condition with Froude number ranging from 0.2 to 0.7. The results showed that the hull separation made a slight alteration of the total resistant coefficient (in magnitude) on the same configuration. Even though not a single configuration outperformed the others in the entire range of Froude number, two configurations with S/L=0.11 showed the highest drag reduction performance as the optimum model based on their Froude number range: configuration A3 from Froude number ranging from the initial to 0.6 and configuration C3 for the rest of the Froude number range.
Subjects: 
Drag reduction
Asymmetric-hull configuration
Pentamaran
Wigley-hull form
Hull separation
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.