Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243812 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Issue:] 1 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 711-716
Publisher: 
Elsevier, Amsterdam
Abstract: 
The ubiquitous presence of CBZ, SMX and LRZ in water is a subject of increasing concern. This study represents a new approach in terms of these contaminants' removal through Fenton process in three different ways, employing a solid catalyst, RM, which, alone, is a source of Fe3+ just as much is a source of environmental problems. Alongside RM, 100 mg/L of H2O2 were utilized as the initial solution's pH remained unaltered. It was observed that, at these operating conditions, an appreciable degradation rate of contaminants was achieved. Solar photo-Fenton under visible light radiation led the way by attaining more than 50% removal for all three contaminants, reaching its peak when degrading around 62% of LRZ initially present. Therefore, RM, a residue from the alumina industry, seems to be a promising choice in terms of CECs degradation through Fenton process. Nevertheless, some parameters still need optimization, in order to achieve a better understanding and certainty of this oxidation process' skilfulness for detoxifying CECs from the world's water resources.
Subjects: 
Sunlight radiation
Decontamination
Fenton process
Pharmaceuticals
Red mud
Waste management
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.