Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243560 
Year of Publication: 
2019
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 5 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2019 [Pages:] 37-40
Publisher: 
Elsevier, Amsterdam
Abstract: 
Biodiesel is a promising sustainable alternative to non-renewable petrodiesel. In this work, oils extracted from microalgae are used for biodiesel production. To simplify the process, the extraction of the oils and their reaction are made to take place simultaneously in one step. Immobilized lipase was used as the catalyst, and supercritical CO2 (SC-CO2) was used as an extraction solvent and reaction medium. The use of SC-CO2 allows easy separation of the products and leaves the leftover biomass uncontaminated, allowing it to be utilized in food and pharmaceutical applications. The effects of temperature (35-50 °C), reaction time (2-6 h), and methanol:oil (M:O) molar ratio (8:1-16:1) on biodiesel yield were investigated. Within 6 h, the maximum biodiesel production yield was found to be 19.3% at a temperature of 35 °C and at an M:O molar ratio of 8:1. The results hold promise in simplifying the microalgae-to-biodiesel production process.
Subjects: 
Biodiesel
Extraction
Microalgae
Supercritical CO
Transesterification
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.