Please use this identifier to cite or link to this item:
Strittmatter, Anthony
Wunsch, Conny
Year of Publication: 
Series/Report no.: 
WWZ Working Paper No. 2021/05
University of Basel, Center of Business and Economics (WWZ), Basel
The vast majority of existing studies that estimate the average unexplained gender pay gap use unnecessarily restrictive linear versions of the Blinder-Oaxaca decomposition. Using a notably rich and large data set of 1.7 million employees in Switzerland, we investigate how the methodological improvements made possible by such big data affect estimates of the unexplained gender pay gap. We study the sensitivity of the estimates with regard to i) the availability of observationally comparable men and women, ii) model exibility when controlling for wage determinants, and iii) the choice of different parametric and semiparametric estimators, including variants that make use of machine learning methods. We find that these three factors matter greatly. Blinder-Oaxaca estimates of the unexplained gender pay gap decline by up to 39% when we enforce comparability between men and women and use a more exible specication of the wage equation. Semi-parametric matching yields estimates that when compared with the Blinder-Oaxaca estimates, are up to 50% smaller and also less sensitive to the way wage determinants are included.
Gender Inequality
Gender Pay Gap
Common Support
Model Specification
Matching Estimator
Machine Learning
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
2.36 MB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.